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Abstract. Conventional variance-based sensitivity indices are extended to

deal with the case when information is available as closed convex sets of prob-
ability measures, a situation that exists when probability distributions are

specified with interval-valued parameters. The generalization to closed convex

sets of probability measures yields lower and upper sensitivity indices. An
example demonstrates the numerical method for estimating these sensitivity

indices.

1. Introduction

The information input into computer models may be imprecise for several rea-
sons. Imprecision is often a consequence of measurement processes, for example
using digital sensors. Prior information is sometimes recorded in the literatures as
intervals without any information about probability distributions [3]. Given only
finite time is argued that it may be impossible to elicit precise probability distribu-
tions from experts [1]. Indeed experts may deliberately use imprecision to express
their uncertainty.

The extension of probabilistic analysis to include imprecise information is now
well established in the theory of imprecise probabilities [10], robust Bayesian anal-
ysis [6][4] and fuzzy statistics [9]. In this paper we explore the notion of sensitivity
within this framework. We confine ourselves to the theory of coherent lower and
upper probabilities, which, whilst not the most general theory of imprecise proba-
bilities, is sufficient to deal with the the situation in which probability distributions
are specified by interval-valued parameters.

2. Coherent lower and upper probabilities

Consider a probability density function f(x,a), where x ∈ R and a = (a1, a2, . . . ,
am), a vector of parameters of the probability density function. By definition

(2.1) Pr(A) =
∫

A

f(x,a)dx,∀A ⊆ R

If each parameter ai in a is specified by a closed interval [li, ui] then a is constrained
by an n-dimensional box Q, defining a closed set of probability measures that imply
lower and upper probabilities, P (A) and P (A)

(2.2) Pr(A) = inf
a∈Q

∫
A

f(x,a)dx

(2.3) Pr(A) = sup
a∈Q

∫
A

f(x,a)dx

1
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P (A) and 1 − P (A) will be located at the same point a, so P (A) = 1 − P (A),
meaning that P (A) and P (A) are coherent lower and upper probabilities [11].

The lower and upper expectations, E(X) and E(X), are given by

(2.4) E(X) = inf
a∈Q

∫ ∞

−∞
xf(x,a)dx

(2.5) E(X) = sup
a∈Q

∫ ∞

−∞
xf(x,a)dx

The definitions in Equations 2.2 to 2.5 can be extended to the case when f(x,a)
is a joint probability distribution on X1 × . . .×Xn and x = (x1, . . . , xn).

2.1. Lower and upper variance. The standard definition of the variance V (X)
of a random variable X is

(2.6) V (X) = E([X − E(X)]2)

In the case when M is a closed convex set of probability measures P , Walley [10]
demonstrates the following expressions for the lower and upper variances, V (X)
and V (X),

(2.7) V (X) = min
P∈M

V (X)

(2.8) V (X) = max
P∈M

V (X)

2.2. Natural extension of imprecise probabilities. Let g be a function such
that y = g(x),x = (x1, . . . , xn), and let By be the subset of Rn containing all
of the points (x1, . . . , xn) such that g(x) ∈ C,C ∈ R, then the lower and upper
probabilities P (C) and P (C) are:

(2.9) P (C) = inf
a∈Q

∫
By

· · ·
∫

f(x1, . . . , xn,a)dx1 . . . dxn

and

(2.10) P (C) = sup
a∈Q

∫
By

· · ·
∫

f(x1, . . . , xn,a)dx1 . . . dxn

3. Variance-based sensitivity analysis

Consider now the conventional probabilistic case in which the uncertainties in
x1, . . . , xn are expressed as precise probability distributions, i.e. x1, . . . , xn and y
are replaced by random variables X1, . . . , Xn and Y respectively. In variance-based
sensitivity analysis, the first order sensitivity indices Si represents the fractional
contribution of a given variable Xi to the variance in a given output variable Y [2].
In order to calculate the sensitivity indices the total variance V in the model output
Y is apportioned to all the input factors Xi as [8]

(3.1) V =
∑

i

Vi +
∑
i<j

Vij +
∑

i<j<k

Vijk + . . . + V12...k

where

(3.2) Vi = V [E(Y |Xi = x∗i )]

(3.3) Vij = V [E(Y |Xi = x∗i , Xj = x∗j )]− Vi − Vj
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and so on. V [E(Y |Xi = x∗i )] is the Variance of the Conditional Expectation (VCE)
and is the variance over all values of x∗i in the expectation of Y given that Xi has
a fixed value x∗i . The first order (or ‘main effect’) sensitivity index Si for variable
Xi is:

(3.4) Si = Vi\V

and the ‘total effect’ sensitivity index is [5]

(3.5) STi =
V [E(Y |X∼i = x∗∼i)]

V (Y )

where X∼i denotes all of the variables other than Xi.

4. Imprecise sensitivity indices

In the case when the uncertainty in the variables X1 . . . Xn is described by a
closed convex set M of probability measures P , the lower and upper variances
introduced in Equations 2.7 and 2.8 above can be extended to lower and upper
sensitivity indices, Si and Si, i = 1, . . . , n:

(4.1) Si = min
P∈M

Si

and

(4.2) Si = max
P∈M

Si

where

(4.3)
n∑

i=1

Si ≤ 1.

The additional constraint in Equation 4.3 means that the upper sensitivity indices
Si, i = 1, . . . , n may not co-exist. Indeed there is a closed convex set S of sensitivity
indices S ∈ S,S = {S1, . . . Sn} constrained such that ∀Si, i = 1, . . . , n : Si ≤ Si ≤
Si and

∑n
i=1 Si ≤ 1.

Estimating the lower and upper sensitivity indices in Equations 4.1 and 4.2 is a
problem of non-linear optimization. Each iteration j of the optimization involves
estimating the precise sensitivity indices for some Pj ∈ M. Note, however, that
the points used to evaluate these sensitivity indices at iterations 1, . . . , j may be
reused in subsequent iterations.

5. Application

5.1. The Challenge Problems. Oberkampf et al. [7] have proposed a series of
Challenge Problems to compare and evaluate alternative theories of uncertainty.
One of the Challenge Problems relates to a damped linear oscillator (a single degree
of freedom mass-spring-damper system), whose steady-state magnification factor
Ds is given by

(5.1) Ds =
k√

(k −mω2)2 + (cω)2

where k is the spring constant, m is the mass of the oscillator, ω is the frequency
of oscillation and c is the damping coefficient. In the Challenge Problems, the
variables in Equation 5.1 were specified as follows:
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m: is given by a precise triangular probability distribution defined on the
interval [10,12], with a median value 11.

k: is given by an imprecise triangular probability distribution, specified by
three imprecise parameters kmin, kmod and kmax, whose values are con-
tained in the closed intervals kmin ∈ [90, 100], kmod ∈ [150, 160] and kmax ∈
[90, 100].

c: is given by a closed interval of possible values c ∈ [5, 10]. No probability
distribution over this interval is specified or to be assumed.

ω: is given by an imprecise triangular probability distribution, specified by
three imprecise parameters ωmin, ωmod and ωmax, whose values are con-
tained in the closed intervals ωmin ∈ [2.0, 2.3], ωmod ∈ [2.5, 2.7] and ωmax ∈
[3.0, 3.5].

In the Challenge Problems the information concerning k and c was given by three
independent sources. The problem of aggregation of evidence from multiple sources
is beyond the scope of the present paper and is not addressed. The information is
used from the first source only.

5.2. Imprecise sensitivity indices for the Challenge Problems. The numer-
ical method by which the problem outlined in Section 5.1 has been tackled involves
a combination of optimization to estimate the bounds and Monte Carlo resampling
to estimate each conditional variance.

There are 6 interval-valued distribution parameters (kmin, kmod, kmax, ωmin,
ωmod and ωmax) and one interval-valued variable, c, in the analysis. If the sen-
sitivity indices Si were a monotonic function of these imprecise quantities then it
would only be necessary only to test the vertices of the 7 dimensional hypercube
that contains all of the possible values of these quantities. There is, however, no
reason to believe that Si should be a monotonic function of these interval-valued
quantities, so in order to find the imprecise sensitivity indices it was necessary to
search the volume contained within these interval constraints. Besides testing each
of the 27 vertices, the volume was searched by uniformly sampling the space. La-
bel each test point (including vertices and randomly sampled points) as a vector
tj = (kmin,j , kmod,j , kmax,j , ωmin,j , ωmod,j , ωmax,j , cj), j = 1, . . . , u. For each tj the
corresponding precise probability distributions for k and ω, and the precise prob-
ability distribution for m were sampled, which, together with the precise value cj ,
yield a precise estimate Vj(Ds) of the variance of (Ds). For each tj the sensitivity
indices were estimated by resampling the probability distributions for the variables
m, k and ω. This resampling yielded a precise estimate of the sensitivity indices
Si,j . The lower and upper variances are then given by

(5.2) V (Ds) = min
j

(Vj(Ds))

(5.3) V (Ds) = max
j

(Vj(Ds))

and the lower and upper sensitivity indices are given by

(5.4) Si(Ds) = min
j

(Si,j(Ds)), i = 1, . . . , n

(5.5) Si(Ds) = max
j

(Si,j(Ds))
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In the Challenge Problem specified above the lower and upper variances were es-
timated as V (Ds) = 0.10 and V (Ds) = 1.57. The imprecise sensitivity indices are

i Variable Si Si

1 m 0.01 0.05
2 k 0.19 0.79
3 ω 0.19 0.73

Table 1. Imprecise sensitivity indices

listed in Table 1. Note the additional condition in Equation 4.3 means that the
upper sensitivity indices cannot all coexist.
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